Contaminación de las Aguas Subterráneas por Arsénico (As) el caso del distrito de Juliaca – Perú

Autores/as

  • Wile Mamani Navarro Universidad Nacional de Juliaca

Resumen

La contaminación por arsénico (As), mediante el consumo de aguas subterráneas, es un problema de salud pública que afecta la vida de aquellas personas que no cuentan con servicio de abastecimiento de agua potable en la ciudad de Juliaca. En las aguas subterráneas de la ciudad de Juliaca, se encontraron concentraciones de As con una media de 73.5 µg L-1; que supera el límite máximo de 10 µg L-1, establecido por la directriz de la Organización Mundial de la Salud (OMS). Asimismo se determinaron medias de parámetros fisicoquímicos como pH de 7.595, CE de 1238.539 ?S cm-1 y concentraciones medias de turbiedad 5.250 NTU, CaCO3  454.692 mg L-1, Ca2+ 115.659 mg L-1, Mg2+ 33.383 mg L-1, SO42- 80.981 mg L-1 y Cl – 146.037 mg L-1; estos valores se ubicaron dentro de los estándares nacionales e internacionales. Sin embargo, la ingesta diaria de agua subterránea contaminada en la ciudad de Juliaca puede ser la principal vía de exposición al As, que conlleve consecuencias graves y efectos adversos en la salud de los pobladores. Por lo tanto, el agua subterránea utilizada para el consumo público debe someterse a pruebas periódicas de As y otros elementos para garantizar que su inocuidad se encuentre dentro de los lineamientos nacionales establecidos. Finalmente se requiere una atención inmediata por parte de las autoridades locales.Palabras claves: Contaminación de agua subterránea, metales pesados, riesgo a la salud humana, Arsénico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andrade, A. I. A. S. S., & Stigter, T. Y. (2013). The distribution of arsenic in shallow alluvial groundwater under agricultural land in central Portugal: Insights from multivariate geostatistical modeling. Science of The Total Environment, 449, 37–51. https://doi.org/10.1016/j.scitotenv.2013.01.033

Bhowmick, S., Nath, B., Halder, D., Biswas, A., Majumder, S., Mondal, P., … Chatterjee, D. (2013). Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: Understanding geogenic and anthropogenic influences. Journal of Hazardous Materials, 262, 915–923. https://doi.org/10.1016/j.jhazmat.2012.07.014

Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016). Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere, 152, 520–529. https://doi.org/10.1016/j.chemosphere.2016.02.119

Charlet, L., Chakraborty, S., Appelo, C. A. J., Roman-Ross, G., Nath, B., Ansari, A. A., … Mallik, S. B. (2007). Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: A field and reactive transport modeling study. Applied Geochemistry, 22(7), 1273–1292. https://doi.org/10.1016/j.apgeochem.2006.12.022

Chauhan, V. S., Nickson, R. T., Chauhan, D., Iyengar, L., & Sankararamakrishnan, N. (2009). Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere, 75(1), 83–91. https://doi.org/10.1016/j.chemosphere.2008.11.065

Choong, T. S. Y., Chuah, T. G., Robiah, Y., Gregory Koay, F. L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1–3), 139–166. https://doi.org/10.1016/j.desal.2007.01.015

de Meyer, C. M. C., Rodríguez, J. M., Carpio, E. A., García, P. A., Stengel, C., & Berg, M. (2017). Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru). Science of The Total Environment, 607–608, 1437–1450. https://doi.org/10.1016/j.scitotenv.2017.07.059

Devic, G., Djordjevic, D., & Sakan, S. (2014). Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of The Total Environment, 468–469, 933–942. https://doi.org/10.1016/j.scitotenv.2013.09.011

George, C. M., Sima, L., Arias, M. H. J., Mihalic, J., Cabrera, L. Z., Danz, D., … Gilman, R. H. (2014). Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bulletin of the World Health Organization, 92(8), 565–572. https://doi.org/10.2471/BLT.13.128496

Güler, C., Kurt, M. A., Alpaslan, M., & Akbulut, C. (2012). Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414–415, 435–451. https://doi.org/10.1016/j.jhydrol.2011.11.021

Hundal, H. S., Kumar, R., Singh, K., & Singh, D. (2007). Occurrence and Geochemistry of Arsenic in Groundwater of Punjab, Northwest India. Communications in Soil Science and Plant Analysis, 38(17–18), 2257–2277. https://doi.org/10.1080/00103620701588312

Kaur, T., Bhardwaj, R., & Arora, S. (2017). Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India. Applied Water Science, 7(6), 3301–3316. https://doi.org/10.1007/s13201-016-0476-2

Krishna Kumar, S., Bharani, R., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2014). Hydrogeochemistry and groundwater quality appraisal of part of south Chennai coastal aquifers, Tamil Nadu, India using WQI and fuzzy logic method. Applied Water Science, 4(4), 341–350. https://doi.org/10.1007/s13201-013-0148-4

Krishna Kumar, S., Hari Babu, S., Eswar Rao, P., Selvakumar, S., Thivya, C., Muralidharan, S., & Jeyabal, G. (2017). Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India. Applied Water Science, 7(5), 2533–2544. https://doi.org/10.1007/s13201-016-0447-7

Kumar, P. J. S. (2014). Evolution of groundwater chemistry in and around Vaniyambadi Industrial Area: Differentiating the natural and anthropogenic sources of contamination. Geochemistry, 74(4), 641–651. https://doi.org/10.1016/j.chemer.2014.02.002

Kumar, P., Kumar, M., Ramanathan, A. L., & Tsujimura, M. (2010). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective. Environmental Geochemistry and Health, 32(2), 129–146. https://doi.org/10.1007/s10653-009-9270-5

Mohora, E., Rončević, S., Agbaba, J., Tubić, A., Mitić, M., Klašnja, M., & Dalmacija, B. (2014). Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/flocculation (ECF). Separation and Purification Technology, 136, 150–156. https://doi.org/10.1016/j.seppur.2014.09.006

Möller, T., Sylvester, P., Shepard, D., & Morassi, E. (2009). Arsenic in groundwater in New England — point-of-entry and point-of-use treatment of private wells. Desalination, 243(1–3), 293–304. https://doi.org/10.1016/j.desal.2008.05.016

Paul, D., Kazy, S. K., Banerjee, T. Das, Gupta, A. K., Pal, T., & Sar, P. (2015). Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater. Bioresource Technology, 188, 14–23. https://doi.org/10.1016/j.biortech.2015.02.039

Rahman, M. M., Dong, Z., & Naidu, R. (2015). Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere, 139, 54–64. https://doi.org/10.1016/j.chemosphere.2015.05.051

Smedley, P. ., & Kinniburgh, D. . (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

WHO. (2008). Guidelines for Drinking-Water Quality (3ra. Ed.). Geneva, Switzerland: World Health Organization. Recuperado de https://www.who.int/water_sanitation_health/dwq/fulltext.pdf

WHO. (2011). Guidelines for Drinking-Water Quality (4ta. Ed.). Geneva, Switzerland: World Health Organization. Recuperado de https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf

Yadav, I. C., Devi, N. L., & Singh, S. (2015). Reductive dissolution of iron-oxyhydroxides directs groundwater arsenic mobilization in the upstream of Ganges River basin, Nepal. Journal of Geochemical Exploration, 148, 150–160. https://doi.org/10.1016/j.gexplo.2014.09.002

Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metal distribution and water quality characterization of water bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environmental Monitoring and Assessment, 188(11), 628. https://doi.org/10.1007/s10661-016-5639-y

Descargas

Publicado

2019-12-20

Número

Sección

Artículos